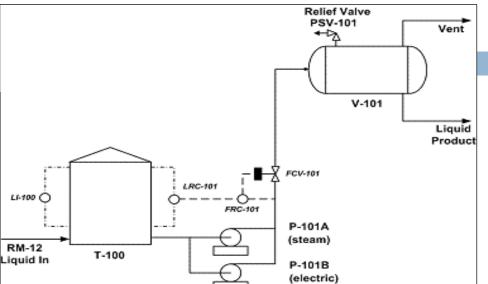


HAZOP/LOPA-Seminar Dresden 2019, 27.11.2019

12:30 bis 14:45


Übungen: HAZOP/Risikograph und SIL-Spezifikationen von Schutzmaßnahmen

Gefahrenfeld		Sollfunktion: Behälter füllen,	Entleeren
Abweichung	Ursache	Auswirkung	Gegenmaßnahme
Stand zu hoch	Zu hohe Zulaufgeschwindigkeit, zu späte Abschaltung, unerkannter Zulauf, Überwachungsfehler, Rückstrom aus Abgassammelsystem	Zu hoch: Stoffaustritt mit Umweltauswirkung, Personenschaden und Explosion möglich.	Zulauf mit Blende Zulauf/Ablauf-Überwachung mit Abschaltung bei Standüberschreitung, unabh. zweite Standmessung mit LIA++S++
Stand zu tief	Versagen der Stand-Steuerung	Pumpe läuft trocken, Gas blowby, Überdruck in nachgelagerten Anlagen	Druckabsicherung PSV in nachgelagerten Anlagen
Temperatur zu tief	Beheizung ausgefallen oder abgestellt	Atmosph. Tank: Zuluft/Abluft- Ventil eingefroren, Bersten, Produktaustritt	Frostschutzsichere Ventile, Kontrollen durch Operator
Druck zu tief	Abkühlung eingeschlossener Dämpfe Zu schnelles Abpumpen	Behälter zieht sich zusammen	Vakuumfeste Auslegung, Isolierung, unabsperrbar zu Abluft, 2 TIA-S-Blende in Entleerung
Druck zu hoch	Verbindungen zu Anlagen mit höherem Druck	Bersten, Produktaustritt	Blenden, Interlock, Druckabsicherung,
Ex-gemisch & Zündquelle	Brennbare Flüssigkeit, Luftzutritt, Zündquelle	Explosion, Trümmer-Flug	lnertisierung mit Ausfallüberwachung
Leckage, nach außen	Brennbare Flüssigkeit, Undichtigkeiten	Ex-Gemisch und Zündquelle Explosion, Trümmer-Flug	Zündquellenvermeidung nach Zonenkonzept, technische Lüftung
Brand	Brennbare Flüssigkeit, Undichtigkeiten Unterfeuerung,	Explosion, Trümmer-Flug	Ableitung von Leckage-Flüssigkeiten in sicheren Auffangbehälter

3

- 1. "Knoten" (verknüpfte Apparate) festlegen für den 1. und 2. HAZOP-Abschnitt & Soll-Funktion beschreiben
- 2. Abweichungen und deren Auslöser suchen
- 3. Wie meldet sich eine Abweichung vom sicheren Bereich?
- 4. Abschätzen der Auswirkungen, Häufigkeiten
- 5. Häufigkeiten für jede Abweichung, Risikomatrix, Risikograph
- 6. Gegenmaßnahmen festlegen, SIL Anforderungen

	Abweichung	Ursache	Auswirkung	Gegenmaßnahme
1	Mengenstrom	Fehlbedienung:	Überfüllung V-101, Flüssigkeit über	Füllstandüberwachung LIS an V-101 mit
	zu groß von	Bypass Regelventil	Gaspendelung zu anderen Behältern,	Schnellschlussventil hinter FCV-101,
	T 100 > V101	geöffnet.	PSV öffnet zur Fackel.	PSV-101 für 2-Phasenströmung auslegen.
			Häufigkeit W2/kein Personenschaden	
2	Mengenstrom	Stand T-100 zu	Zündung von angesaugtem Gas-	Pumpenabschaltung bei
	zu klein von	niedrig, Kavitation	Luftgemisch, Rückschlag nach T-100.	Niveauunterschreitung LIC-101,
	T 100 > V101	der Pumpe P-101B	Risikograph S2, A2, G1, W2 – SIL2	Trockenlaufschutz für P-101 A/B (SIL 2).
3	Stand zu hoch	Pumpenausfall P-	Überfüllung T-100, Austritt brennbarer	Überfüllsicherung LSA+,
	T-100,	101A, Rückströmen	Flüssigkeit, gefährliche explosions-	Pumpenüberwachung mit automatischem
		von V-101	fähige Atmosphäre, Zündung.	Umschalten auf P 101B
			Risikograph S2, A2, G1, W1 – SIL1	(SIL 1), Rückschlagklappe FCV 101 (SIL 1).

- Lagertank nach DIN EN 14015, Volumen 8000m3, wärmeisoliert,
 Festdach-Tank mit Stahlauffangtasse.
- Innenschlange beheizt mit Thermalöl von 180-220°C.
- Lagergut brennbare Flüssigkeit mit Flammpunkt 220°C, Siedepunkt > 300°C, mit langsamer Zersetzung unter Bildung entzündlicher Gase mit Zündtemperaturen > 400°C und pyrophorer Ablagerung (FeS, selbst entzündlich bei Kontakt mit Sauerstoff).
- Lagertank wird kontinuierlich über Pipeline mit Pumpendruck (ca. 100 bar am Anfang der Pipeline -10bar am Eintritt in den Lagertank) befüllt.
- Der Tank befindet sich in einem ausgelagertem Tanklager mit wenig Personal, wichtige Funktionen werden von der km-weit entfernten Produktionsanlage gesteuert.

Im Tank ist durch die Crackgase "Zone O" <u>und</u> eine Zündquelle ist ständig vorhanden (die pyrophoren Ablagerungen).

Es ist also zwangsläufig eine Reduzierung von "Zone O" auf "keine Ex-Atmosphäre vorhanden" notwendig.

Das bedeutet nach TRGS 725 eine Reduzierung um 3 Stufen.

Technische Maßnahmen hierzu siehe TRBS 2152 Teil 2 (Inertisierung).

https://www.arbeitssicherheit.de/schriften/dokument/0%3A7540505%2C7.html

Tabelle 2: Einfluss der Zoneneinteilung und Wahrscheinlichkeit des Auftretens einer wirksamen Zündquelle auf die erforderliche Anzahl von Reduzierungsstufen

Zone	Zone 0/20	Zone 1/21	Zone 2/22	keine Zone
Zündquelle	Aı	nzahl erforderlicher	Reduzierungsstuf	en
Zündquelle im Normal- betrieb (betriebsmäßig) vorhanden	3	2	1	_
Zündquelle im vorher- sehbaren Fehlerfall oder bei gelegentlichen Be- triebsstörungen vorhan- den	2	1	_	_
Zündquelle im seltenen Fehlerfall oder bei sel- tener Betriebsstörungen vorhanden	1	_	_	_
Zündquelle im sehr sel- tenen Fehlerfall vorhan- den	_	_	_	_

TRGS 725 Kap 4: Ex-Vorrichtungen als Maßnahmen der Zonenreduzierung/ Zündquellenvermeidung

- 4.1 Verfahrensweise zur Beurteilung des Ausfallverhaltens von ExVorrichtungen
- In einem ersten Schritt wird die Sicherheitsfunktion der Ex-Vorrichtung festgelegt. Gegebenenfalls kann eine Ex-Vorrichtung mehrere Sicherheitsfunktionen beinhalten. Jede einzelne Sicherheitsfunktion stellt eine Ex-Einrichtung dar.
- Das Ausfallverhalten der Ex-Einrichtung ist insbesondere von der konstruktiven Auslegung bestimmt, wird aber auch von anderen Einflussgrößen, wie Verfahrensweisen, prozesstechnischen Eigenschaften oder organisatorischen Maßnahmen beeinflusst. Die Beurteilung der Auswirkung dieser Einflussgrößen dient als Basis für die vollständige Beurteilung der Ex-Einrichtung. (Geeignete Verfahren zur Beurteilung des Ausfallverhaltens von Ex-Einrichtungen hinsichtlich dieser Einflussgrößen können beispielsweise Ursache-Wirkungs-Analyse, PAAG-Verfahren (PAAG = Prognose von Abweichungen, Auffinden der Ursachen, Abschätzen der Auswirkungen, Gegenmaßnahmen) oder HAZOP (HAZOP = Hazardous Operability Study) sein.)

TRGS 725 Abschn. 4.4, Zonenreduzierung

(4) Die Ex-Einrichtung zur Zonenreduzierung muss in Abhängigkeit des Ergebnisses der Gefährdungsbeurteilung überwacht werden, damit deren Ausfall erkannt wird und kurzfristig Maßnahmen eingeleitet werden können. Zur Einteilung von explosionsgefährdeten Bereichen in Zonen siehe Anhang 1 Nummer 1.6 Absatz 3 GefStoffV).

Tabelle 7: Bestimmung der resultierenden Zone in Abhängigkeit vom Ausfallverhalten der Ex-Vorrichtung zur Zonenreduzierung

Zone ohne Maßnahme		Zone 0			Zone 1	Zone 2
Ausfallverhalten der Ex-Vorrichtung zur Zonenreduzierung	sehr selten	selten	zu erwarten	selten	zu erwarten	zu erwarten
resultierende Klassifizierungsstufe	КЗ	K2	K1 ¹	K2	K1 ¹	K1 ¹
resultierende Zone	keine Zone	Zone 2	Zone 1	keine Zone	Zone 2	keine Zone

Nach TRGS 725, Kap 6 über die "Umsetzung der Klassifizierungsstufe in ein Konzept der funktionalen Sicherheit" ist die Sicherheitsfunktion in 1 von 3-Ausführung mit betriebsbewährten Bauteilen auszuführen, alternativ SIL 3.

http://regelwerke.vbg.de/vbg_trgs/trgs725/trgs725_40_.html

TRGS 725 Abschn. 6, Klassifizierungsstufe

Explosionsschutzmaßnahme als MSR Einrichtung

Klassifizierungsstufe	Safety Integrity Level (SIL oder SIL _{CL})
K1	SIL 1 oder SIL _{CL} 1
K2	SIL 2 oder SIL _{CL} 2
К3	SIL 3 oder SIL _{CL} 3

Tabelle 10:

Zuordnung des SIL zu der Klassifizierungsstufe (7) Die Bestimmung des SIL für eine festgelegte Architektur der MSR-Einrichtung erfolgt nach den Methoden und Regeln der DIN EN 50495 (VDE 0170-18):2010. Der SIL der gesamten Kette entspricht der resultierenden Klassifizierungsstufe entsprechend Tabelle 10.

Explosionsschutzmaßnahme mechanisch nach DIN EN 13463-6

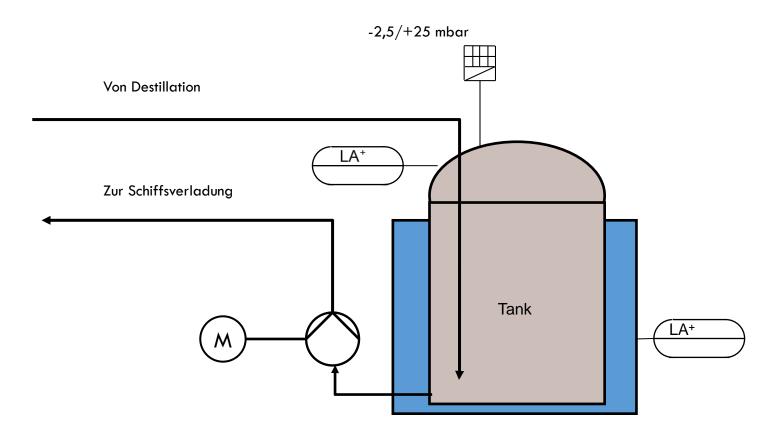

Klassifizierungsstufe	IPL ¹
K1	1
K2	2
К3	-

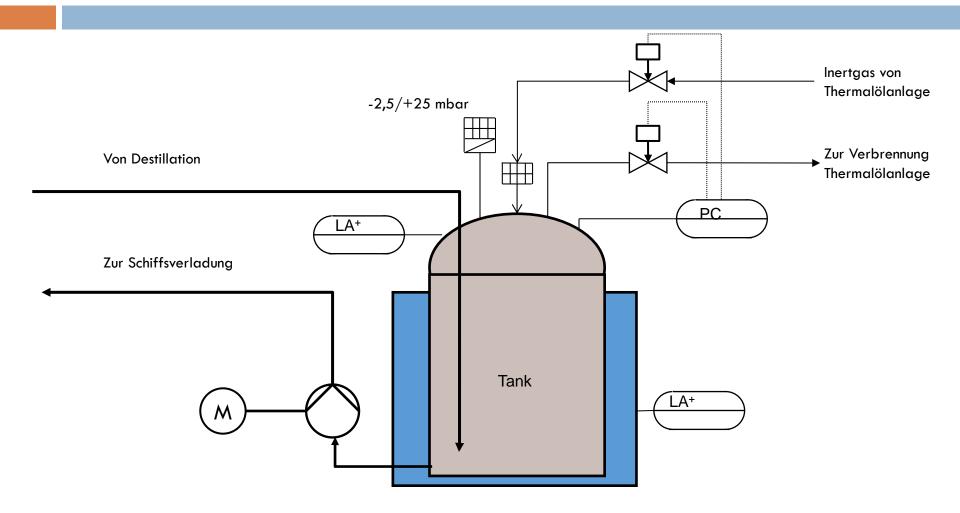
Tabelle 12:

Zuordnung der Ignition Protection Level (IPL) für mechanische Bauteile nach der DIN EN 13463-6 zu den Klassifizierungsstufen

Beispiel 1, Lagertank für MFO

Beispiel 1, Lagertank mit Inertisierung, HAZOP-Studie Teil 1

Teilanl./Apparat:	Lagertank Tk 100, Pumpe P-100	0			
Sollfunktion:	Befüllung von Lagertank Tk 100 mit Schweröl über Pipeline (100-10bar), Entleerung über Pumpe von unten auf Schiff, Inertisierung des Gasraumes mit Abgas der Thermalanlage, alternativ mit N2				
Abweichung	Ursache	Auswirkung	S/B	Gegenmaßnahme	SIL
Stand zu hoch					
Stand zu hoch					
Stand zu tief					
Stand zu tief					
Strömung zu hoch					
Strömung zu hoch					
Strömung zu niedrig					
Strömung zu niedrig					
Strömt entgegengesetzt					
Strömt entgegengesetzt					
Druck zu hoch					
Druck zu hoch					
Druck zu tief					
Druck zu tief					


Beispiel 1, Lagertank mit Inertisierung, HAZOP-Studie Teil 2

Teilanl./Apparat:	Lagertank Tk 100, Pumpe P-100				
Sollfunktion:	Befüllung von Lagertank Tk 100 mit Schweröl über Pipeline (100-10bar), Entleerung über Pumpe von unten auf Schiff, Inertisierung des Gasraumes mit Abgas der Thermalanlage, alternativ mit N2				
Abweichung	Ursache	Auswirkung	S/B	Gegenmaßnahme	SIL
Temp. zu tief					
Temp. zu hoch					
Ex-Gemisch & Zündquelle innen					
Ex-Gemisch & Zündquelle innen					
Stoffaustritt					
Stoffaustritt Ex-Gemisch & Zündquelle außen					
Ex-Gemisch & Zündquelle außen					
Bewegte Teile					
Arbeiten (Proben, Reinigen, Instand- halten, An- und Abfahren)					

- Methode: Inertisierung mit Rauchgas aus der Thermalölanlage. Bei Ausfall der Thermalölanlage: Alarm und Umschaltung auf N2-Flaschenbatterie.
- □ Überdruckfahrweise mindestens 5 mbar oberhalb Öffnungsdruck des Sicherheits-Unterdruckventils (-2,5 mbar). Maximal 10 mbar unterhalb des Öffnungsdrucks des Überdruckprotegos (+25 mbar).
- Betriebsdruck im Tank somit +2,5 mbar bis +15 mbar jeweils als Überdruck zur Umgebung.
- Um Sauerstoffeintrag zu vermeiden, öffnet Inertgaszufuhr bei +2,5 mbar(Ü).
- Um Dämpfeaustritt durch das Überduck-Kito zu vermeiden, öffnet bei 10 mbar die Abgasleitung zum Verbrennungslufteintritt am Thermalölofen.
- Messungen: Druck Gasraum Tank, O2-Gehalt Inertgas, Druck Inertgas,
 Druck Flaschenbatterie, Öffnungmeldungen Unter- und Überdruckventil.

Beispiel 1, Lagertank mit Inertisierung, HAZOP-Studie

Teilanl./Apparat:	Lagertank Tk 100, Pumpe P-100				
Sollfunktion:		mit Schweröl über Pipeline (100-10ba t Abgas der Thermalanlage, alternativ		rung über Pumpe von unten auf Schiff,	
Abweichung	Ursache	Auswirkung	S/B	Gegenmaßnahme	SIL
Stand zu hoch	Niveaumessung defekt W2: Wahrscheinlichkeit 1x in 10 Jahren	Tank läuft über, Druckaufbau, Bersten, Brand des Tanks. S2: Schwere Verletzungen oder Tod 1 Person, Schäden in Umgebung	S	Zweite unabhängige Niveaumessung mit Alarmierung und Abschaltung des Zulaufs. Nach EN 615111: S2+A1+G2+W2 → SIL1	SIL 1
Stand zu tief	Niveaumessung defekt	Pumpe läuft trocken, Zerstörung der Gleitringdichtung, Brand. S2	S	Zweite unabhängige Niveaumessung mit Alarmierung und Abschaltung der Pumpe	SIL 1
Strömung zu hoch	lm Zulauf: Regelventil der vorgeschalteten Anlage offen	Ggf. Druckanstieg im Tank, siehe dort			
Strömung zu hoch	lm Ablauf	Nicht möglich, Druckverlust der Leitung begrenzt die Menge.		N/A	
Strömung zu niedrig	Im Ablauf:	Pumpe kavitiert, Zerstörung der Gleitringdichtung, Brand. S2	S	Alarm bei Unterschreitung der Mindestfördermenge	SIL 1
Strömung zu niedrig	lm Zulauf: Regelventil der vorgeschalteten Anlage zu	Tankniveau nimmt ab	В	N/A	
Druck zu hoch	Zu großer Zulauf, siehe oben.	Bersten des Tanks, Brand. S2	S	Auslegung der Abgasleitung und der Notentlüftung auf max. Fördermenge	Analog SIL 1
Druck zu hoch	Ausdehnung des Gasraumes durch Sonneneinstrahlung	Bersten des Tanks, Brand. \$2	S	Auslegung der Notentlüftung (Protego) auf max. Sonneneinstrahlung gem. TRGS 509	Analog SIL 1
Druck zu hoch	Inertgasmenge von Stickstoffbatterie zu hoch	Bersten des Tanks, Brand. S2	S	Druckreduzierung von Flaschendruck 200bar auf 2,5 mbar in 2 Stufen mit Alarmierung, Berechnung und Einbau einer Lochscheibe.	SIL 1

Beispiel 1, Lagertank mit Inertisierung, HAZOP-Studie

Teilanl./Apparat:	Lagertank Tk 100, Pumpe P-100	Lagertank Tk 100, Pumpe P-100				
Sollfunktion:		mit Schweröl über Pipeline (100-10ba t Abgas der Thermalanlage, alternativ		rung über Pumpe von unten auf Schiff,		
Abweichung	Ursache	Auswirkung	S/B	Gegenmaßnahme	SIL	
Druck zu tief	Abpumpen zu hoher Menge, Temperaturabsenkung durch Gewitterregen.	Eintritt von O2, Ex-Gemisch, Kontakt mit pyrophoren Ablage-rungen (FeS) an der Wandung, Explosion, Brand. Brandüberschlag auf benachbarten Tank. S2: Schwere Verletzungen oder Tod 1 Person, Schäden in Umgebung	S	Inertisierung des Gasraumes mit Abgas der Thermalanlage: Überwachung der Inertisierung durch Drucküberwachung des Tankinnenraumes PIA-+, bei PIA- Umschalten von Hand auf N2-Flaschenbatterie, Drucküberwachung der N2 Flaschenbatterie. O2-Konzentrationsmessung im Tankraum, Stellungsrückmeldung Protego-Unterdruckventil	SIL 2 für Druck- und SIL 1 für O2- Überwa chung	
Temp. zu tief	Ausfall der Thermalölbeheizung	Produkt wird dickflüssig und lässt sich nicht mehr fördern.	В	Alarmierung		
Temp. zu hoch	Temperaturregler der Beheizung defekt	Lagertemperatur oberhalb Flammpunkt entgegen der zugelassenen Verwendung	S	Alarmierung		
Ex-Gemisch & Zündquelle innen	Sauerstoffeinbruch, siehe unter "Druck zu tief"					
Stoffaustritt	Diverse mit gleicher Auswirkung	Brandgefahr, Geruch, Grundwasser	В	Auffangtasse vorhanden		
Ex-Gemisch & Zündquelle außen	Produktaustritt	Brand, Explosion	В	Zonenkonzept überprüfen		
Bewegte Teile	Nicht vorhanden					
Arbeiten (Proben, Reinigen/Instandhal- ten, An-/Abfahren)	Pyrophore Ablagerungen können sich beim Öffnen des Tankes entzünden	Brand, Explosion	В	Ständiges befeuchten der Wandungen, Erstellung einer Betriebsanweisung.		

Beispiel 1, Lagertank mit Inertisierung, HAZOP-Studie

Anmerkungen zur dieser HAZOP

- Gesetzlich vorgegebene Sicherheitseinrichtungen (Einhaltung Stand der Technik) sind unabhängig von einer HAZOP erforderlich, z. B. Überfüllsicherung.
- Redundante Messungen sollten auf unterschiedlichen Meßprizipien basieren, z. B. Druckmessung und Radar für Niveauüberwachung bzw. Überfüllsicherung. Damit kann vermieden werden, dass beide Messungen produkt- oder prozessbedingt ausfallen.
- □ Für eine aussagekräftige HAZOP sind deutlich mehr Informationen erforderlich, z. B. Stoffdaten, Sollwerte, vor- und nachgeschaltete Anlagen, R&I Fließbild.
- Die Abweichungen sollten mit Werten im Vergleich zum Normalwert belegt werden.

Beispiel 2, C2 Hydrierung (PAAG Broschüre)

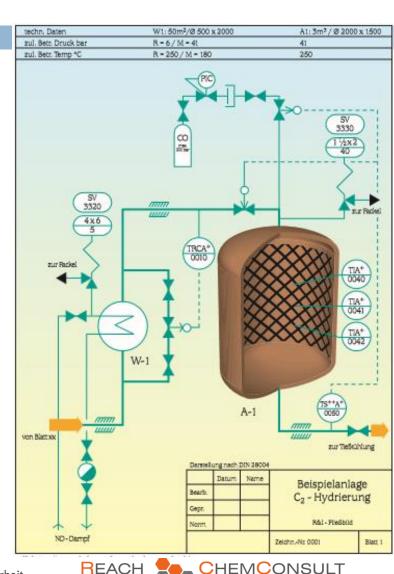
Verfahrensgrundzüge

In einem Hydrierreaktor soll bei einem Druck von 35 bar das in einem Gasgemisch in Spuren vorhandene unerwünschte Acetylen unter Zuhilfenahme eines Katalysators zu Ethylen hydriert werden.

Dem Reaktor A-1 wird kontinuierlich 1,5 t/h Rohgas mit der Zusammensetzung 20,5 % Wasserstoff (H2)

79,0 % Ethylen (C2H4)

0,5 % Acetylen (C2H2)


zugeführt.

Es können die folgenden exothermen Reaktionen ablaufen:

ca. 120 °C b) C2H4 + H2 ----> C2H6

Der Wasserstoff ist im Prozessgas im stöchiometrischen Überschuss vorhanden. Damit die Reaktion abläuft, muss das Gas im Wärmeaustauscher W-1 auf 80 °C erwärmt werden. Diese Temperatur gewährleistet hauptsächlich die gewünschte Reaktion "a". Eine Erhöhung der Temperatur muss verhindert werden, da sonst der Wasserstoff auch das Ethylen angreift und die Reaktion "b" unkontrolliert abläuft. Dies führt zu Produktverlust und schließlich zu einer Aufheizung des Reaktorbettes. Bei längerem Anhalten dieser Situation besteht die Gefahr des Versagens des Behälterwerkstoffes durch Überhitzung.

Zur Absicherung gegen ein solches "Durchgehen" der Reaktion kann dem Reaktor CO als "Katalysatorgift" zugeführt werden, was einen sofortigen Stillstand der Reaktion bewirkt. Beim Beaufschlagen der Reaktorfüllung mit CO belegt dieses den Katalysator und macht ihn unwirksam. Nach Behebung der Störung kann der Katalysator mit Rohgas freigespült und dadurch wieder für die Acetylenhydrierung regeneriert werden.

Beispiel 2, C2 Hydrierung Vervollständigen Sie die HAZOP-Studie

Teilanl./Apparat:	C2-Hydrieranlage				
Sollfunktion:	eite Rohgas bei 80 °C, 35 bar und einem Mengenstrom von 1,5 t/h vom Wärmeaustauscher W-1 in Reaktor A-1				
A1		A	5.44.		011
Abweichung	Ursache	Auswirkung	R-Matrix	Gegenmaßnahme	SIL
Kein Durchfluss					
Zu wenig Durchfluss					
Zuviel Durchfluss					
Druck zu hoch					
Druck zu tief					
Temp.zu tief					
Temp.zu hoch					
Ex-Gemisch &					
Zündquelle innen					
Zuviel C2H2					
Ex-Gemisch & Zündquelle außen					
Maintenance					

Beispiel 2, C2 Hydrierung Vervollständigen Sie die HAZOP-Studie

Teilanl./Apparat:	C2-Hydrieranlage				
Sollfunktion:	Leite Rohgas bei 80 °C, 35 bar und einer	m Mengenstrom von 1,5 t/h vom Wärmeaເ	ustauscher \	W-1 in Reaktor A-1	
Abweichung	Ursache	Auswirkung	R-Matrix	Gegenmaßnahme	SIL
Kein Durchfluss	Regelventil geschlossen	Kein Rohgas, keine Reaktion		N/A	
Zu wenig Durchfluss	Regelventil geschlossen.	Ggf. erhöhte Temperatur, siehe dort.			
Zuviel Durchfluss	Regelventil geöffnet	Zu geringe Temperatur, siehe dort.			
Druck zu hoch	a) eingeblocktes Leitungssystem mit W-1 b) CO-Leckagen bei eingeblocktem Reaktor	a) Aufheizen des eingeblockten Gasesb) Überschreitung des Auslegungsdrucks.SICHERHEITSRELEVANT		a) Auslegung ausreichend b) ausreichend dimensioniertes Sicherheitsventil (SV 3330).	
Druck zu tief	Vordruck, siehe vorheriger Knoten	Geringere Umsetzungsrate des C2H2		Drucküberwachung vorsehen	
Temp.zu tief	Regelventil geöffnet, Dampfdruck zu gering, Wärmetauscher verlegt.	zu tiefe Eintrittstemperatur des Rohgases zum Reaktor, Reaktion kommt zum Erliegen, Produktkontamination mit C2H2		Qualitätsüberwachung (Online Analysator) und ggf. Stopp der Produktion.	
Temp.zu hoch	Bypass-Regelventil schließt zu weit und zu viel Gas strömt durch den Wärmetauscher	zu hohe Eintrittstemperatur des Rohgases zum Reaktor, Überhitzung des Reaktors. SICHERHEITSRELEVANT		Temperaturmessung mit Alarmierung bei >100 °C. Bei >115 °C Zufluss zum Reaktor stopp und gleichzeitig CO auf (TZ++ 0050).	
Ex-Gemisch & Zündquelle innen	Sauerstoff bei Inbetriebnahme im Reaktor	Explosion, sobald das Gas-Luft-Gemisch den Katalysator berührt. SICHERHEITSRELEVANT		Vor Inbetriebnahme Inertisierung mit Stickstoff, Gasanalyse vor Freigabe.	
Zuviel C2H2	Änderung der Produktzusammensetzung, zu viel C2H2 im Rohgas	höhere Umsatzleistung, Temperaturanstieg über die Auslegungsgrenzen. SICHERHEITSRELEVANT		Online-Analysator, Zumischung von Reaktionsgas.	
Ex-Gemisch & Zündquelle außen	Undichtigkeit	explosionsfähiges Gemisch außerhalb der Anlage. SICHERHEITSRELEVANT		Gaswarngeräte an ausgewählten Stellen, Explosionsschutzkonzept	
Maintenance					

HAZOP Excel Formular der BG RCI

Die BG RCI stellt Formulare in ECXEL oder WORD zur Verfügung, die ständig aktualisiert werden. Die Formulare lassen sich leicht den besonderen Umständen des zu betrachtenden Prozesses anpassen. Sie finden bei der BG RCI auch die Broschüre ISSA 001 zum Download oder zur Bestellung.

- https://downloadcenter.bgrci.de/shop/?query=Sich erheitsbetrachtung&field=stichwort
- □ <u>..\Dresden 2019</u>

